{"id":38648,"date":"2023-09-22T10:43:04","date_gmt":"2023-09-22T03:43:04","guid":{"rendered":"https:\/\/beta.gymadom.com\/nghien-cuu-khoa-hoc-cua-sinh-vien-va-hoc-vien-cao-hoc-duoc-chap-nhan-tai-hoi-nghi-so-1-the-gioi-ve-tri-tue-nhan-tao\/"},"modified":"2023-11-13T14:23:39","modified_gmt":"2023-11-13T07:23:39","slug":"nghien-cuu-khoa-hoc-cua-sinh-vien-va-hoc-vien-cao-hoc-duoc-chap-nhan-tai-hoi-nghi-so-1-the-gioi-ve-tri-tue-nhan-tao","status":"publish","type":"post","link":"https:\/\/gymadom.com\/nghien-cuu-khoa-hoc-cua-sinh-vien-va-hoc-vien-cao-hoc-duoc-chap-nhan-tai-hoi-nghi-so-1-the-gioi-ve-tri-tue-nhan-tao\/","title":{"rendered":"NGHI\u00caN C\u1ee8U KHOA H\u1eccC C\u1ee6A SINH VI\u00caN V\u00c0 H\u1eccC VI\u00caN CAO H\u1eccC \u0110\u01af\u1ee2C CH\u1ea4P NH\u1eacN T\u1ea0I H\u1ed8I NGH\u1eca S\u1ed0 1 TH\u1ebe GI\u1edaI V\u1ec0 TR\u00cd TU\u1ec6 NH\u00c2N T\u1ea0O."},"content":{"rendered":"

Ch\u00fac m\u1eebng B\u00e0i b\u00e1o \u201cLVM-Med: Learning large-scale self-supervised vision models for medical imaging via second-order graph matching\u201d<\/em> (Nh\u00f3m t\u00e1c gi\u1ea3: Duy M. H. Nguyen<\/a>,\u00a0Hoang Nguyen<\/a>,\u00a0Nghiem T. Diep<\/a>,\u00a0Tan N. Pham<\/a>,\u00a0Tri Cao<\/a>,\u00a0Binh T. Nguyen<\/a>,\u00a0Paul Swoboda<\/a>,\u00a0Nhat Ho<\/a>,\u00a0Shadi Albarqouni<\/a>,\u00a0Pengtao Xie<\/a>,\u00a0Daniel Sonntag<\/a>,\u00a0Mathias Niepert<\/a>) v\u1eeba \u0111\u01b0\u1ee3c ch\u1ea5p nh\u1eadn t\u1ea1i NeurIPS 2023.<\/span><\/p>\n

C\u00e1c b\u1ea1n sinh vi\u00ean v\u00e0 h\u1ecdc vi\u00ean cao h\u1ecdc tham gia nghi\u00ean c\u1ee9u, g\u1ed3m c\u00f3:<\/span><\/p>\n

(1) Nguy\u1ec5n H\u1ed3 Minh Duy: C\u1ef1u sinh vi\u00ean Khoa To\u00e1n – Tin h\u1ecdc, nghi\u00ean c\u1ee9u sinh ng\u00e0nh Machine Learning t\u1ea1i Max-Planck Institute, \u0110\u1ee9c. (Co-first author)<\/span><\/p>\n

(2) Nguy\u1ec5n Minh Ho\u00e0ng: Sinh vi\u00ean n\u0103m 4, khoa To\u00e1n – Tin h\u1ecdc (Co-first author)<\/span><\/p>\n

(3) Cao Thi\u00ean Tr\u00ed, C\u1ef1u sinh vi\u00ean Ch\u01b0\u01a1ng tr\u00ecnh Ti\u00ean ti\u1ebfn ng\u00e0nh Khoa h\u1ecdc M\u00e1y t\u00ednh, Khoa C\u00f4ng ngh\u1ec7 Th\u00f4ng tin<\/span><\/p>\n

(4) Ph\u1ea1m Ng\u1ecdc T\u00e2n: H\u1ecdc vi\u00ean cao h\u1ecdc ng\u00e0nh Tr\u00ed tu\u1ec7 nh\u00e2n t\u1ea1o<\/span><\/p>\n

(5) Di\u1ec7p T\u01b0\u1eddng Nghi\u00eam, sinh vi\u00ean n\u0103m 2 – Ch\u01b0\u01a1ng tr\u00ecnh Ti\u00ean ti\u1ebfn ng\u00e0nh Khoa h\u1ecdc M\u00e1y t\u00ednh, Khoa C\u00f4ng ngh\u1ec7 Th\u00f4ng tin<\/span><\/p>\n

B\u00e0i b\u00e1o c\u00e1o t\u1eadp trung x\u00e2y d\u1ef1ng c\u00e1c pre-trained models cho \u1ea3nh y khoa. \u0110\u1ec3 l\u00e0m \u0111\u01b0\u1ee3c nh\u01b0 v\u1eady th\u01b0\u1eddng r\u1ea5t kh\u00f3 v\u00ec v\u1ea5n \u0111\u1ec1 domain-shifts trong \u1ea3nh y khoa (ch\u1eb3ng h\u1ea1n, \u1ea3nh CT, MRI, X-ray th\u00ec c\u00f3 nhi\u1ec1u \u0111\u1eb7c t\u00ednh kh\u00e1c nhau). B\u00e0i b\u00e1o \u0111\u00e3 gi\u1ea3i quy\u1ebft v\u1ea5n \u0111\u1ec1 n\u00e0y b\u1eb1ng vi\u1ec7c \u0111\u1ec1 xu\u1ea5t LVM-Med, n\u00f4m na l\u00e0 m\u1ed9t thu\u1eadt to\u00e1n contrastive learning d\u1ef1 v\u00e0o high-order graph matching. Trong c\u00e1c b\u00e0i to\u00e1n y khoa kh\u00f3 nh\u01b0 ph\u00e2n lo\u1ea1i kh\u1ed1i u trong n\u00e3o (Brain Tumor Classification) hay ph\u00e2n lo\u1ea1i b\u1ec7nh v\u00f5ng m\u1ea1c ti\u1ec3u \u0111\u01b0\u1eddng (Diabetic Retinopathy Grading), LVM-Med t\u1ed1t h\u01a1n r\u1ea5t nhi\u1ec1u so v\u1edbi c\u00e1c ph\u01b0\u01a1ng ph\u00e1p hi\u1ec7n t\u1ea1i (g\u1ea7n 6-7% v\u1ec1 m\u1eb7t accuracy).<\/span><\/span><\/h2>\n